翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

quasisimple group : ウィキペディア英語版
quasisimple group

In mathematics, a quasisimple group (also known as a covering group) is a group that is a perfect central extension ''E'' of a simple group ''S''. In other words, there is a short exact sequence
:1 → ''Z''(''E'') → ''E'' → ''S'' → 1
such that ''E'' = (''E'' ), where ''Z''(''E'') denotes the center of ''E'' and (, ) denotes the commutator.〔I. Martin Isaacs, ''Finite group theory'' (2008), p. 272.〕
Equivalently, a group is quasisimple if it is equal to its commutator subgroup and its inner automorphism group Inn(''G'') (its quotient by its center) is simple; due to Grün's lemma, Inn(''G'') must be non-abelian. All non-abelian simple groups are quasisimple.
The subnormal quasisimple subgroups of a group control the structure of a finite insoluble group in much the same way as the minimal normal subgroups of a finite soluble group do, and so are given a name, component.
The subgroup generated by the subnormal quasisimple subgroups is called the layer, and along with the minimal normal soluble subgroups generates a subgroup called the generalized Fitting subgroup.
The quasisimple groups are often studied alongside the simple groups and groups related to their automorphism groups, the almost simple groups. The representation theory of the quasisimple groups is nearly identical to the projective representation theory of the simple groups.
==Examples==
The covering groups of the alternating groups are quasisimple but not simple, for n \geq 5.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「quasisimple group」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.